CCS Technical Documentation NPM-2NX Series Transceivers

System Module

Contents

	Page No
Abbreviations	
Transceiver NPM-2NX	
Introduction	
Engine Module WG8	
Introduction	8
UEM	8
UEM introduction	
Blocks	9
RF IF	
Charging Control	
DIGITAL IF	11
AUDIO CODEC	
UI DRIVERS	
IR interface	11
AD CONVERTERS	11
SIM	11
Technical information	
UPP	12
Introduction	
Blocks	
Technical information	
Flash memory	
Introduction	
Technical information	
UIHW	
ICD	13
Audio HW	17
Farniece	17
Microphone	18
Ruzzer	
Battery	
Dhone battery	17
Battery connector	
A conserving Interface	20
System connector	20
D module	
IK module	
Charger IF	
Test interfaces	
Production test pattern	
Other test points	
EMC	
General	
BB component and control/IO line protection	
Transceiver interfaces	27
BB - RF Interface Connections	27
BB Internal connections	

UPP Block signals	. 36
MEMORY Block Interfaces	41
IR Block Interfaces	42
SIM Block Interfaces	. 42
Audio Interfaces	. 43
Key/Display blocks	. 45
Baseband External Connections	46
Test Pattern for production tests	. 48
General about testing	48
RF Module	50
Introduction	50
Requirements	. 50
Design	50
Interfaces	.50
Environmental Specifications	51
Temperature Conditions	. 51
Vibration and Free Fall	51
Humidity and Water Resistance	. 52
ESD strength	. 52
Main Technical Specifications	52
RF frequency plan	. 52
DC Characteristics	. 54
Functional Description	
Block diagram	. 55
Receiver	56
Frequency Synthesizers	. 57
Transmitter	. 57
Software Compensations	. 58
RF Characteristics	59
Receiver	. 60
Transmitter	61
Synthesizers	. 62
Antenna	. 63
EMC	63
Radiated spurious emissions, Receiver	63
Conducted spurious emissions, Receiver	63
Harmonic and spurious emissions, Transmitter, conducted and radiated	64
Maintainability	.64

List of Figures

Fig 1	NPM-2NX Block Diagram	.7
Fig 2	System Block Diagram	.8
Fig 3	LCD interface	.13
Fig 4	Placement of keys	.14
Fig 5	SIM block	.17
Fig 6	Battery connection diagram	.19
Fig 7	BLB-3 Battery contacts (BLB-2 has the same interface)	.20
Fig 8	System connector	.21
Fig 9	IR interface	.22
Fig 10	Top view of production test pattern	.24
Fig 11	Telescoping pattern between UPP and UEM	.24
Fig 12	Transceiver block naming for interfaces	.27
Fig 13	NPM-2NX Frequency Plan	.53
Fig 14	Power Distribution Diagram	.54
Fig 15	Block diagram of the NPM-2NX RF module	.56

NOKIA CCS Technical Documentation

Abbreviations

••••••	
ADC	Analog to Digital Converter
ASIC	Application Specific Integrated Circuit
BB	Baseband
COG	Chip On Glass
ENGINE	The Transceiver parts fixed to PWB
FBUS	Fast asynchronous serial bus
FDL	Flash Down Loading, programming the phone FLASH memory
GSM	Global system for mobile communications (Groupe Spêcial Mobile)
HW	Hardware
I & Q	In phase and Quadrature components of complex signal
IR	Infrared. A wireless data/audio transmit medium.
IrDA	Infrared Data Association
JTAG	An in-circuit test method, based on the standard IEEE-1149.1
LDO	Low Drop Out
LED	Light Emitting Diode
Low Iq mode	Low quiescent current mode
MBUS	A bidirectional serial bus
NTC	Negative Temperature Coefficient.
PWB	Printed Wiring Board
PCM	Pulse Code Modulation
PDM	Pulse Density Modulation
PWM	Pulse Width Modulation
RF	Radio Frequency
Rx	Receiver path

SIM	Subscriber Identity Module
SW	Software
TDMA	Time Division Multiple Access
Transceiver	Transmitter & Receiver, mobile phone
Тх	Transmitter path
UEM	Universal Energy Management baseband ASIC.
UI	User Interface
UPP	Universal Phone Processor baseband ASIC.
US	United States (of America)
US-AMPS	Analog Mobile Phone System used in United States
US-DAMPS	Digital AMPS, used in US, channel compatible with AMPS

Transceiver NPM-2NX

Introduction

The NPM-2NX is a dual band radio transceiver unit for GAIT (AMPS/TDMA800/TDMA1900/GSM1900) networks. It is a true 3 V transceiver with internal antenna and vibra.

Mechanical construction resembles Nokia 61XX series and the same accessories can be used. External RF connector is included.

An integrated Infrared link is located on the top of the phone.

NPM-2NX has the connection for the small SIM (Subscribe Identity Module) card.

The PWB has one-sided SMD and there is no separate User Interface PWB but the keyboard connections are on the non-SMD side of the board.

Engine Module WG8

Introduction

This section describes the baseband part of the NPM-2NX transceiver.

The BB architecture is similar to the earlier BB generation. The major difference is the integration level. Core BB consists of 2 ASICs and flash memory.

BB core technical specification

The core part of NPM-2NX BB (figure below) consist of 2 ASICs, UEM and UPP, and flash memory. Following sections describe these parts.

Figure 2: System Block Diagram

UEM

UEM introduction

UEM is the Universal Energy Management IC for digital handportable phones. In addition

to energy management it performs all the baseband mixed-signal functions.

Most of UEM pins have 2kV ESD protection and those signals, which are considered to be exposed more easily to ESD, have 8kV protection inside UEM. Such signals are all audio signals, headset signals, BSI, Btemp, Fbus and Mbus signals.

Blocks

REGULATORS

UEM has 6 regulators for BB power supplies and 7 regulators for RF power supplies. VR1 regulator has 2 outputs VR1a and VR1b. In addition there are 2 current generators IPA1 and IPA2 for biasing purposes.

Bypass capacitor (1uF) is required for each regulator output to ensure stability.

Reference voltages for regulators require external 1uF capacitors. Vref25RF is reference voltage for VR2 regulator, Vref25BB is reference voltage for VANA, VFLASH1, VFLASH2, VR1 regulators, Vref278 is reference voltage for VR3, VR4, VR5, VR6, VR7 regulators, VrefRF01 is reference voltage for VIO, VCORE, VSIM regulators and for RF.

BB	RF	Current
VANA: 2.78Vtyp 80mAmax	VR1a:4.75V 10mAmax VR1b:4.75V	IPA1: 0-5mA
Vflash1: 2.78Vtyp 70mAmax		IPA2: 0-5mA
Vflash2: 2.78Vtyp 40mAmax	VR2:2.78V 100mAmax	
VSim: 1.8/3.0V 25mAmax	VR3:2.78V 20mA	
VIO: 1.8Vtyp 150mAmax	VR4: 2.78V 50mAmax	
Vcore: 1.0-1.8V 200mAmax	VR5: 2.78V 50mAmax	
	VR6: 2.78V 50mAmax	
	VR7: 2.78V 45mAmax	

Table 1: UEM Regulators

VANA regulator supplies internal and external analog circuitry of BB. It is disabled in sleep mode.

Vflash1 regulator supplies LCD, IR-module and digital parts of UEM and Safari_GTE asic. It is enabled during startup and goes to low Iq-mode in sleep mode.

Vflash2 regulator supplies data cable (DLR-3). It's enabled/disenabled through writing register and default is off.

VIO regulator supplies both external and internal logic circuitries. It is used by LCD, flash and UPP. Regulator goes in low Iq-mode in sleep mode.

VCORE regulator supplies DSP and Core part of UPP. Voltage is programmable and startup default is 1.5V. Regulator goes to low Iq-mode in sleep mode.

VSIM regulator supplies SIM card. Voltage is programmable. Regulator goes in to low Iqmode in sleep mode.

VR1 regulator uses two LDOs and a charge pump. Charge pump requires one external 1uF capacitor in Vpump pin and 220nF flying capacitor between pins CCP and CCN. VR1 regulator is used by Safari_GTE RF ASIC.

VR2 regulator is used to supply external RF parts, lower band up converter, TX power detector module and Safari_GTE. In light load situations VR2 regulator can be set to low Iq-mode.

VR3 regulator supplies VCTCXO and Safari_GTE in RF. It's enabled always when UEM is active. When UEM is in sleep mode VR3 is disabled.

VR4 regulator supplies RF parts having low noise requirements. In light load situations VR4 regulator can be set to low Iq-mode.

VR5 regulator supplies lower band PA. In light load situations VR5 regulator can be set to low Iq-mode.

VR6 regulator supplies higher band PA and TX amplifier. In light load situations VR6 regulator can be set to low Iq-mode.

VR7 regulator supplies UHF VCO and Safari_GTE. In light load situations VR7 regulator can be set to low Iq-mode.

IPA1 and IPA2 are programmable current generators. $27k\Omega/1\%/100$ ppm external resistor is used to improve the accuracy of output current. IPA1 is used by lower band PA and IPA2 is used by higher band PA.

RF IF

The interface between the baseband and the RF section is handled also by UEM. It provides A/D and D/A conversion of the in-phase and quadrature receive and transmit signal paths and also A/D and D/A conversions of received and transmitted audio signals to and from the UI section. The UEM supplies the analog AFC signal to RF section according to the UPP DSP digital control.

Charging Control

The CHACON block of UEM ASIC controls charging. Needed functions for charging controls are pwm-controlled battery charging switch, charger-monitoring circuitry, battery voltage monitoring circuitry and RTC supply circuitry for backup battery charging (Not used in NPM-2NX). In addition external components are needed for EMC protection of the charger input to the baseband module.

DIGITAL IF

Data transmission between the UEM and the UPP is implemented using two serial connections, DBUS (programmable clock) for DSP and CBUS (1.0MHz GSM and 1.08MHz TDMA) for MCU. UEM is a dual voltage circuit, the digital parts are running from 1.8V and the analog parts are running from 2.78V.

AUDIO CODEC

The baseband supports two external microphone inputs and one external earphone output. The inputs can be taken from an internal microphone, a headset microphone or from an external microphone signal source through headset connector. The output for the internal earpiece is a dual ended type output, and the differential output is capable of driving 4Vpp to earpiece with a 60 dB minimum signal to total distortion ratio. Input and output signal source selection and gain control is performed inside the UEM Asic according to control messages from the UPP. A buzzer and an external vibra alert control signals are generated by the UEM with separate PWM outputs.

UI DRIVERS

UEM has dedicated single output drivers for buzzer, vibra, IR, display LEDs and keyboard LEDs. These generate PWM square wave to devices.

IR interface

The IR interface is integrated to UEM and data transfer is done via TXD and RXD paths. UEM supports data speeds up to 115.2kbit/s.

IR module integrates a sensitive receiver and a built-in power driver. IR module itself supports speeds from 9.6kbit/s to 1.152Mbit/s. UEM supports speeds up to 115.2 kbit/s. Vflash1 supplies IR module except transmit LED. Transmit LED is supplied from VBAT and maximum current is limited by serial resistor. TXD and RXD lines are connected to UEM and shutdown is controlled by UPP through level-shifter V350.

AD CONVERTERS

There is 11-channel analog to digital converter in UEM. Some channels of the AD converter aren't used in NPM-2NX (LS, KEYB1-2). The AD converters are calibrated in the production line

SIM

The SIM interface is the electrical interface between the Subscriber Identify Module Card (SIM card) and mobile phone (via UEM device). The UEM device contains power up/down, port gating, card detect, data receiving, ATR-counter, registers and level shifting buffers logic for SIM.

Technical information

UEM package is 168-pin CSP package with 150 signal pins, 16 thermal pins and 2 kelvin pins. Package size is 12mm x 12mm with max. thickness of 1.23mm. Solder ball diameter is 0.4mm +-0.05mm and ball pitch is 0.8mm.

UPP

Introduction

NPM-2NX uses UPPv8M ASIC. The RAM size is 8M. The processor architecture consists of both DSP and MCU processors.

Blocks

UPP is internally partitioned into two main parts:

The Processor and Memory System (i.e. Processor cores, Mega-cells, internal memories, peripherals and external memory interface) is known as the Brain.

Brain consists of the blocks: the DSP Subsystem (DSPSS), the MCU Subsystem (MCUSS), the emulation control EMUCtI, the program/data RAM PDRAM and the Brain Peripherals-subsystem (BrainPer).

The NMP custom cellular logic functions. This is known as the Body.

Body contains all interfaces and functions needed for interfacing other baseband and RF parts. Body consists of following sub-blocks: MFI, SCU, CTSI, RxModem, AccIF, UIF, Coder, GPRSCip, BodyIF, SIMIF, PUP and CDMA (Corona).

Technical information

UPP package is 13x13-matrix CSP package with 144 signal pins. Package size is 12mm x 12mm with max. thickness of 1.40mm. Solder ball diameter is 0.5mm +-0.05mm and ball pitch is 0.8mm.

Flash memory

Introduction

NPM-2NX uses 64 Mbit flash as an external memory. VIO is used as a power supply for normal in-system operation. An accelerated program/erase operation can be obtained by supplying Vpp of 12 volt to flash device. Memory architecture consists of eight sectors of 8kB and 63 sectors of 64kB each.

The device has two read modes: *asynchronous* and *burst*. Burst mode read is utilized in NPM-2NX except the start-up when asynchronous read is used for a short time.

In burst mode UPP supplies only the initial address and subsequent addresses are generated inside flash by the rising edge of Clock (FLSCLK in UPP). After acknowledging the initial address the flash starts to deliver a continuous sequential data word stream. Data stream continues until the end of the memory or until the user loads in a new starting address or stops the burst in advance.

Technical information

Flash package is a CSP package with 40 signal pins and 4/8 support balls. Package max. size is (WxLxH) 10,6mm x 11,0mm x 1.2mm. Solder ball diameter is 0.3mm and ball pitch

is 0.5mm.

UIHW

LCD

Introduction

NPM-2NX uses black/white GD51 96*65 full dot matrix display with COG driver. One vendor - SEIKO SED15B0 - is used in NPM-2NX.

Interface

LCD data, clock, chip select and reset signals come from the UPP. The VIO voltage is supplied to a logic voltage pin and the FLASH1 voltage is used to supply power to the LCD. The LCD uses extra filtering capacitors to filter voltages. The booster capacitor (C302 2u2F) is connected between the booster pin and the Vflash1. The capacitor stores the boosting voltage.

Reyboard

Introduction

All signals for the keyboard come from the UPP through the emifilter (Z300). The side key, which does not go through the emifilter, and the power key signal are connected directly to the UEM. The pressing of the power key is detected so that the switch power

key connects the PWONX of the UEM to the GND and creates an interruption. Side key detection is achieved by connecting the line to the ground when pressing the side key (volume up or down). The emifilter is the ESD and EMC protection.

The matrix-based keyboard interface consists of a scan column I/O data register and a row of data register. In the keyboard scanning procedure, the MCU performs access to these registers to find out which key was pressed. Scanning is an interrupt-based procedure, i.e. an interrupt generated when the key is pressed, and then the MCU can start the scanning procedure. The side keys are also detected in the same way as the other keys, except that there is no metaldome, and the middle pin is directly connected to the ground.

Power Key

All signals for keyboard come from UPP ASIC except PWRONX line for PWR key which is connected directly to UEM. Pressing of PWR key grounds PWRONX line and UEM generates an interrupt to UPP which is then recognized as a PWR key press.

Keys

All signals for the keyboard come from the UPP through the emifilter (Z300) except the side key, which will not go through the emifilter, and the power key signal, which is connected directly to the UEM. Pressing of the power key is detected so that the switch of the power connects PWONX of the UEM to the GND and creates an interruption. Side key detection is done by connecting line to ground when pressing the side key (volume up or down). Emifilter is ESD and EMC protection.

The matrix-based keyboard interface consists of scan column I/O data register and of a row data register. In keyboard scanning procedure, MCU performs access to these regis-

ters to find out which key was pressed. Scanning is an interrupt procedure, i.e., an interrupt is generated when key is pressed and then the MCU can start the scanning procedure. Side keys are also detected in the same way as other keys except that there is no metaldome, but the middle pin is directly connected to the ground.

	S0 / P00	S1 / P01	S2 / PO2	S3 / PO3	S4 / PO4
R0 / P10	Side key / Vol. down	NC	Send	End	NC
R1 / P11	Side key / Vol. down	Soft left	Up	Down	Soft right
R2 / P12	Side key / Vol. down	1	4	7	*
R3 / P13	Side key / Vol. down	2	5	8	0
R4 / P14	Side key / Vol. down	3	6	9	#
R5 / P15	Reserved	Side key / Vol. up			

Table	2.	Matrix	٥f	kev	detection	lines
Table	∠.	ινιατιτ	UI.	NC Y	uciculul	111103

NC = Not Connected

Lights

Introduction

NPM-2NX has 12 LEDs for lighting purposes. 6 of them (V300-V303, V310-V311) are for display and 6 (V304-V309) for keyboard. LEDs are green light -emitting and SMD through-board-firing.

Interfaces

Display lights are controlled by Dlight signal from UEM. Dlight output is PWM signal which is used to control average current going through LEDs. When battery voltage changes new PWM value is written to the PWM register. This way brightness of the lights remains the same with all battery voltages within range. Frequency of the signal is fixed 128Hz.

Keyboard lights are controlled by Klight signal from the UEM. Klight output is also PWM signal and is used similar way as Dlight.

Technical information

Each LED requires hole in PWB where the body of LED locates in hole and terminals are soldered on component side of module PWB. LEDs have white plastic body around the diode itself which directs the emitted light better to UI-side. Current for LCD lights is limited by resistor between Vbatt and LEDs. For keyboard lights there are resistors in par-

allel.

Vibra

Introduction

Vibra is located to D-cover and is connected by spring connectors on the left bottom side of the engine. Vibra manufacturers for NPM-2NX are Namiki and Matsushita.

Interfaces

Vibra is controlled by PWM signal VIBRA from UEM. With this signal it is possible to control both frequency and pulse width of signal. Pulse width is used to control current when battery voltage changes. With frequency control it is possible to search optimum frequency to have silent and efficient vibrating.

Parameter	Requirement	Unit
Rated DC Voltage	1.3	V
Rated speed	9500 ±3000	rpm
Rated current	115 ±20	mA
Starting current	150 ±20	mA
Armature resistant	8.6	ohm
Rated DC voltage being able to use	1.2 to 1.7	V
Starting DC voltage	min. 1.2	V

Table 3: Electrical paran	neters
---------------------------	--------

SIM card reader

Introduction

NPM-2NX is supporting SIM card reader. The SIM is located in the bottom of the engine. The SIM card reader is manufactured by Amphenol.

Interface

The SIM card reader is connected by spring connectors on the PWB. EMC/ESD protection is done by ASIP, R388. It is a CSP component. VSIM provides power supply voltage to the SIM card reader. Two spark gaps are put to the *no connected* pin to provide protection from ESD.

Technical information

The SIM interface is split between UEM and UPP. This has been done in order to reduce the amount of interconnections on the SIM interface between the UPP and the UEM. The SIM interface control logic and UART is integrated into the UPP. The SIM interface startup and power down sequence, including timing and reset generation is implemented in UEM. The SIM interface in the UPP supports the SIM speed enhancement features, which improves the data transfer rate in the SIM interface.

The UEM contains the SIM interface logic level shifting. UPP SIM interface logic levels are 1.8V. The SIM interface can be programmed to support 3V and 1.8V SIMs. A 5V SIM interface is not supported. The SIM supply voltage is selected by a register in the UEM. It is only allowed to change the SIM supply voltage when the SIM IF is powered down. The SIM power up/down sequence is generated in the UEM. This means that the UEM generates the RST signal to the SIM.

The data communication between the card and the phone is asynchronous half duplex. The clock supplied to the card is in GSM system max. 3.25 MHz and TDMA 4.68Mhz. The data baudrate is SIM card clock frequency divided by 372 (by default), 64, 32 or 16. The protocol type, that is supported, is T=0 (asynchronous half-duplex character transmission as defined in ISO 7816-3).

Audio HW

Earpiece

Introduction

NPM-2NX earpiece is located on the top of the engine.

The speaker is a dynamical one. It is very sensitive and capable of producing relatively high sound pressure also at low frequencies. The speaker capsule and the mechanics around it together make the earpiece.

Interface

The earpiece is driven directly by UEM (EARP and EARN). Both lines are ESD protected inside UEM (\pm 8kV). The earpiece is connected on the PWB by spring connectors.

Technical information

The rated impedance of the earpiece is 32Ω and sensitivity at 1mW/1kHz is 103 ± 3 dB. The diameter of the earpiece is 13.2mm and the thickness is 2.7mm. For more detailed specification see data sheets under material code 5140067.

Microphone

Introduction

The microphone is an electret microphone with omnidirectional polar pattern. It consists of an electrically polarized membrane and an metal electrode which form a capacitor. Air pressure changes(i.e. sound) moves the membrane which causes voltage changes across the capacitor. Because the capacitance is typically 2 pF a FET buffer is needed inside the microphone capsule for the signal generated by the capacitor. Because of the FET the microphone needs a bias voltage.

The microphone manufacturer for NPM-2NX is Matsushita.

Interface

The microphone input is driven single-ended from UEM MIC1P. The microphone bias voltage is generated by MICB1. Esd protection is implemented by spark cap, buried capacitor (Z153) and a special microphone capsule.

Technical information

Output impedance is $2,2k\Omega$ and sensitivity at 1Pa/1kHz is $-42\pm3dB$. The diameter of the microphone is 6.0mm and the thickness is 2.7mm. For more detailed specification see data sheets under material code 5140213.

Buzzer

Introduction

The operating principle of buzzer is magnetic. The diaphragm of the buzzer is made of magnetic material and it is located in a magnetic field created by a permanent magnet. The winding is not attached to the diaphragm as is the case with the speaker. The winding is located in the magnetic circuit so that it can alter the magnetic field of the permanent magnet thus changing the magnetic force affecting the diaphragm. Buzzer's useful frequency range is approximately from 2 kHz to 5kHz.

Interface

The buzzer is connected between Vbat and UEM. The UEM's buzzer driver generates

PWM signal which controls the frequency and pulse width of signal of the buzzer. The buzzer has spring contacts to PWB.

Technical information

Rated input voltage is 3.6V and resonance frequency is 2700Hz. The size of the buzzer is 11mm x 10.2mm x 2.2mm without a gasket. For more detailed specification see data sheets under material code 5140229.

Battery

Phone battery

Introduction

Li-Ion 1000mAh battery BLB-3 is used in NPM-2NX by default. There is also possible use BLB-2 (Li-Ion 750mAh) battery. Its thickness and capacity is smaller. Even though its thickness is smaller it fits electrically and mechanically in NPM-2NX.

Interface

The battery block contains NTC and BSI resistors for temperature measurement and battery identification. The BSI fixed resistor value indicates the chemistry and default capacity of a battery. NTC-resistor measures the battery temperature. Temperature & capacity information is needed for charge control. These resistors are connected to BSI and BTEMP pins of battery connector. Phone has pull-up resistors (R202 and R203) for these lines so that they can be read by A/D inputs in the phone. Dual resistor R205 is esd protection. These can be left out if the protection of UEM itself is enough. There are also spark caps in the battery lines to prevent esd. There is also EMI-filter between VBAT and battery connector for EMC. See schematic.

Figure 6: Battery connection diagram

Batteries have a specific red line which indicates if the battery has been subjected to excess humidity. The batteries are delivered in a *protection* mode, which gives longer

storage time. The voltage seen in the outer terminals is zero (or floating), and the battery is activated by connecting the charger. Battery has internal protection for overvoltage and overcurrent.

Technical information

Local mode is entered by inserting 560 Ohm resistors to these lines. In production following 1% resistors are needed in the case of BLB-3:

Normal/Calibration mode:	BSI = 75k, BTEMP = 47k
Local mode:	BSI = 560, BTEMP = 560
Test mode:	BSI = 3.3k BTEMP = 560

Battery connector

NPM-2NX uses SMD type battery connector. This makes phone easier to assemble in production and connection between battery and PWB is more reliable. Battery connector is manufactured by Hirose.

#	Signal name	Connected	from - to	Batt I/O	Signal properties A/levelsfreq./ timing		Description / Notes
1	VBAT	(+) (batt.)	VBAT	I/O	Vbat	3.0-5.1V	Battery voltage
2	BSI	BSI (batt.)	UEM	Out	Ana.		Battery size indicator
3	BTEMP	BTEMP (batt.)	UEM	Out	Ana.	40mA / Switch 400mA	Battery temperature indica- tor
4	GND	GND	GND		Gnd		Ground

Table 4:	Battery	connector	interface

Accessories Interface

System connector

Introduction

NPM-2NX uses same accessories as Nokia 61XX and 51XX products via similar system connector. NPM-2NX supports headsets HDC-9P, HDE-1P and loopset LPS-1P.

Interface

Interface is compatible with Nokia 61XX and 51XX products. An accessory is detected by the HeadInt and HookInt line which are connected to system connector. The HookInt line is used to activate or end a call (only in HDC-9P).

Figure 8: System connector

Technical information

Esd protection is made by spark caps, buried capacitor (Z154 - Z155 and Z157) and inside UEM which is protected $\pm 8kV$. RF and BB noises are prevented by inductors.

IR module

Introduction

IR module is used to short-range data transfer. It is a low-power infrared transceiver module complaint to the IrDA 1.2 standard for fast infrared data communication. NPM-2NX is using Vishay's TFDU5102 IR module. The IR module is located to the top of the engine side next to Power Up button.

Interface

The transmit of the IR module goes as follow. Transmit is controlled by TXD line which comes from UPP. Between UPP and IR module there is UEM which makes lever-shifter from 1.8V to 2.78V. VBAT gives power supply to transmit led and serial resistor (R350) limits current. There is also filter capacitor (C351) on VBAT-line to give proper voltage. Receiving infrared data to IR led, it goes straight to UEM by RXD line.

VFLASH1 is the power supply of the IR module, except for transmission. That is also filtered by capacitor C350. The IR module has one-control pin to control shut down. Component V350 is control-lever-shifter which is used to change proper voltage to IR module from UPP (GENIO(10) for shutdown.

Figure 9: IR interface

Technical information

The IR interface is designed into the UEM. The IR link supports speeds from 9600 bit/s to 1.152 MBit/s, up to 1m. A special baud rate is used for the NMP specific speech and control information transmission. This dedicated protocol has special HW support for extracting the audio and control information from each other.

Charger IF

Introduction

The charger connection is implemented through the system connector. The system connector supports charging with both plug chargers and desktop stand chargers. The charger is 2-wire or 3-wire galvanic charger. Connecting a charger creates voltage on VCHAR input of the UEM. When VCHAR input voltage level is detected to rise above VCHDET+ threshold by CHACON charging starts. VCHARDET signal is generated to indicate the presence of the charger.

The charging voltage and current are measured to identify the charger and controlling charging. In the case of 3-wire charger PWM-control signal is used to control charger voltage. The pulse duty cycle of the PWM can vary from 0%...100% which is the normal operating range.

Interface

The fuse F100 protects phone from too high currents for example when broken or pirate chargers are used. L100 protects engine from RF noises, which may occur in charging cable. V100 protects UEM asic from reverse polarity charging voltage and from too high charging voltage. C105 is also used for ESD and EMC protection. Charger control line (PWM) uses spark gaps and T-filter (dual R107 10k and C107 10n).

Data cable

Introduction

The data cable is used to transfer data between the phone and a PC or a service box. NPM-2NX uses DAU-9P/S and DLR-3P/S data cables. The data cables are a RS232 compatible. DLR-3 needs also power supply to logic and processor device inside the cable. This is supplied from the phone.

Interface

System connector is used to transfer data to/from PC. Vflash2 voltage is supplied power to DLR-3 data cable through dual mosfet transistor V151. As Vflash2 shutdown is too slow, Genio(0) is also used for controlling the mosfet. Genio(2) is also used to control RST command because hookint-line is too slow to poll RST command.

Test interfaces

Production test pattern

Interface for NPM-2NX production testing is 5pin pad layout in BB area. Production tester connects to these pads by using spring connectors. Interface includes MBUS, FBUSRX, FBUSTX, VPP and GND signals. Pad size is 1.7mm. Same pads are used also for AS test equipment like module jig and service cable.

Figure 10: Top view of production test pattern

Other test points

Because BB ASICs and Flash memory are CSP components the visibility to BB signals is very poor. This makes measuring of most of the BB signals impossible. In order to debug BB at least in some level the most important signals can be accessed from 0.6mm test points.

EMC

General

EMC protection has been designed in BB so that signals from system connector have passive filtering components for EMI/ESD protection. ESD protection for these signals is built inside UEM. Signals have protection inside UEM which can handle 8kV ESD pulses.

BB component and control/IO line protection

Keyboard lines

ESD protection for keyboard signals is implemented by using Emifilter Z300 detection The distance from the A-cover to the PWB is made longer with the spikes in the keymat.

PWB

All edges are grounded from both sides of PWB and solder mask is opened from these areas. Target is that any ESD pulse faces ground area when entering the phone, for example between mechanics covers.

All holes in PWB are grounded and plated through holes. Except LED holes, which can not be grounded.

LCD

ESD protection for LCD is implemented by connecting metal frame of LCD in to ground. Two clips are used to connect the LCD module to the engine, and those two clips are also used to make the metal frame ground connection. Software also takes care of the LCD's crashing in case of ESD pulse.

Microphone

Microphone's metal cover is connected to ground and there are spark gaps on PWB. Microphone is unsymmetrical circuit, which makes it well protected against EMC.

Earpiece, buzzer and IRDA

These NPM-2NX components are protected by mechanics, this is possible because NPM-2NX hasn't changeable A-cover.

Bottom connector lines

	Bottom	Bottom connector signals that have EMC protection											
protection type	VIN	CHRG_ CTRL	MICP	XMIC	SGND	XEAR	MBUS	FBUS_R X/TX					
ferrite bead (600_/ 100MHz)			х	х	х	Х							
ferrite bead (42_/ 100MHz)	х												
spark gaps		Х	Х	Х	Х	Х	Х	Х					
PWB capaci- tors			Х	Х	Х	Х							

Table 5: Bottom connector signals with EMC protections

CCS Technical Documentation

RC-circuit			х	х	х	Х		
capacitor to ground	х		х	х	х	Х		
T- filter		х					Х	Х

Battery connector lines

BSI and BTEMP lines are protected with spark gaps, caps (10p) and RC-circuit (10k & 1n) where resistors are size 0603.

MBUS and FBUS

Opening in the protective metal deck underneath battery is so small that ESD does not get into MBUS and FBUS lines in the production test pattern

Transceiver interfaces

BB - RF Interface Connections

All the signal descriptions and properties in the following tables are valid only for active signals so the signals are not necessarily present all the time.

							- <u></u>	 					
Ri p #	Signal Name DAMPS, GSM19 00	Connect from	ed to	BB I/O		Signal Pro A/DLeve Timing re	operties elsFreq./ esolution	Description / Notes					
RFIC	CCNTRL(2:0))		RF IC (RF IC Control Bus from UPP to RF IC (SAFARI_GTE)								
0	RFBUS- CLK	UPP	RFIC	In	Dig	0/1.8V (0: <0.4V 1: >1.4 V)	9.72 MHz TDMA/ 13MHz GSM	RF Control serial bus bit clock					
1	RFBUSD A	UPP/ RFIC	RFIC UPP	I/O	Dig			Bi-directional RF Control serial bus data,					
2	RFBUSE N1X	UPP	RFIC	In	Dig			RFIC Chip Sel X					
PUS	L(2:0)			Power	Up Res	et from UEN	I to RF IC (SAF	ARI_GTE)					
0	PURX	UEM	RFIC	Out	Dig	0/1.8V	10us	Power Up Reset for RF IC					
1	SLEEPX	UPP	RFIC	Out	Dig	0/1.8V		System clock EN, power safe function					
GENIO(28:0)				General I/O Bus connected to RF, see also separate collective GENIO(28:0) table. Control lines from UPP GENIOs to RF									
8	TX_ENA BLE	UPP	RF	Out	Dig	0/1.8V		Tx power enable					
9	TX_GAI N_CRTL	UPP	RF	Out	Dig	0/1.8V		Tx gain control					
11	BAND- SEL	UPP	RF	Out	Dig	0/1.8V		Lo/Hi band selection					
RFCI	LK (not BUS	-> no rip	#)	System Clock From RF To BB, original source VCTCXO, buffered (and fre- quency shifted, NPM-2NX only) in RF IC (SAFARI_GTE)									
	RFCLK	VCTCX O -> RFIC	UPP	In	An a	800mVpp typ (FET probed) Bias DC blocked at UPP input	19.2 MHz (VCTCXO) RFCIk to BB 19.44MHz TDMA/ 13MHz GSM	System Clk from RF to BB					
	RFCIk GND	RF	UPP	In	An a	0		System Clock slicer Ref GND, not separated from PWB GND layer					
SLO	WAD(6:0)			Slow S	peed A	DC Lines fro	m RF block						
5	RXTEMP	RF Power detec- tion module	UEM	In	An a	0/2.7V dig	-	Rx bandfilterTemperature signal to UEM, NTC resistor (47k)					

Table 6.	RR -	RF	Interface	Signal	Description
	DD -	1/1	IIIICIIace	Jignai	DESCRIPTION

CCS Technical Documentation

6	PATEMP	RF Power detec- tion module	UEM	In	An a	0.1-2.7V	-	Tx PA Temperature signal to UEM, NTC in Power Detection Module				
RFC	ONV(9:0)			RF- BB	RF- BB differential Analog Signals: Tx I&Q, Rx I&Q and reference voltage							
0	RXIP	RFIC	UEM	In	An a	1.4Vpp max. diff. 0.5Vpp typ bias 1.30V		Differential positive/negative in- phase Rx Signal				
1	RXIN											
2	RXQP							Diff. Positive/negative quadrature phase Rx Signal				
3	RXQN											
4	TXIP	UEM	RFIC	Out	An a	2.2Vpp max. diff. 0.6VppTy p Bias 1.30V		Differential positive/negative in- phase Tx Signal				
5	TXIN											
6	TXQP							Differential positive/negative quadrature phase Tx Signal				
7	TXQN											
9	VREFRF 01	UEM	RFIC	Out	Vre f	1.35 V		RF IC Reference voltage from UEM				
RFA	UXCONV(2:	D)	-		RF_B	B Analog Co	ontrol Signals t	o/from UEM				
1	TXP- WRDET	TXP Det. Mod- ule	UEM	In	An a	0.1-2.4 V	50 us	Tx PWR Detector Signal to UEM				
2	AFC	UEM	VCTC XO	Out	An a	0.1-2.4 V		Automatic Frequency Control for VCTCXO				
Vrf	Globals inst	ead of Bus	s		Regu the re	lated RF Sup	oply Voltages fr cifications, not	om UEM to RF. Current values are of the measured values of RF				
	VR1 A	UEM	RFIC	Out	Vre g	4.75 V +- 3%	10 mA max.	UEM, charge pump + linear regu- lator output. Supply for UHF synth phase det				
	VR1 B	UEM	RFIC	Out	Vre g	4.75 V +- 3%	10 mA max.	UEM, charge pump + linear regu- lator output. Supply for Tx VHF VCO				

	VR2	UEM	RFDis cr./ RFIC	Out	Vre g	2.78 V +- 3%	100 mA max.	UEM linear regulator. Supply voltage for Tx IQ filter and IQ to Tx IF mixer.
	VR3	UEM	VCTC XO	Out	Vre g	2.78 V +- 3%	20 mA max.	UEM linear regulator. Supply for VCTCXO + RFCLK Buffer in RF IC.
	VR4	UEM	RFIC	Out	Vre g	″	50 mA max.	UEM linear regulator. Power Sup- ply for LNA / RFIC Rx chain.
	VR5	UEM	RFIC	Out	Vre g	″	50 mA max.	UEM linear regulator. Power Sup- ply for RF low band PA driver sec- tion.
	VR6	UEM	RFIC	Out	Vre g	"	50 mA max.	UEM linear regulator. Power sup- ply for RF high band PA driver section.
	VR7	UEM	RFIC, UHF VCO	Out	Vre g	″	45mA	UEM linear regulator. Power sup- ply for RF Synths
	IPA1	UEM	RF PA	Out	lou t	0-5 mA		Settable Bias current for RF PA L- Band
	IPA2	UEM	RFPA	Out	lou t	0-5 mA		Settable Bias current for RF PA H-band
	VFLASH 1	UEM	RFIC	Out	lou t	2.78V	~2mA	UEM linear regulator common for BB. RFIC digital parts and RF to BB digi IF.
	VR1 A	UEM	RFIC	Out	Vre g	4.75 V +- 3%	10 mA max.	UEM, charge pump + linear regu- lator output. Supply for UHF synth phase det
VBA	TT, Global							
	VBAT- TRF	Batt Conn	RFPA	Out	Vb att	35V	01A 2A peak	Raw Vbatt for RF PA

BB Internal connections

UEM Block Signal Description

Ri p #	Signal Name DAMPS/ GSM19 00	Connected from to		UEN I/O	M Signal Properties A/DLevelsFreq./ Timing resolution		operties relsFreq./ esolution	Description / Notes		
RFCONVDA(5:0)*					1.8V digital interface between UPP and UEM. RF Converter CLK, Rx and Tx I&Q data (bit stream signals).					
0	RFCON- VCLK	UPP	UEM	In	Di g	0/1.8 V		RF Converter Clock		

CCS Technical Documentation

1	RXID	UEM	UPP	0 ut				(PDM) RxI Data			
2	RXQD							(PDM) RxQ Data			
3	TXID	UPP	UEM	In				(PDM) TxI Data			
4	TXQD							(PDM) TxQ Data			
5	AUXDA	UPP	UEM	In				Auxiliary DAC Data			
RFC	ONVCTRL(2:			1.8\ UEN	1.8V digital interface between UPP (DSP) and UEM, RF Converter a UEM RF IF bi-directional serial Control Bus, "DBUS",						
0	DBUS- CLK	UPP	UEM	In	Di g	0/1.8 V	9.72MHz TDMA/ 13MHz GSM	Clock for Fast Control to UEM			
1	DBUSDA			In / O u				Fast Control Data to/from UEM			
2	DBUSEN X			In				Fast Control Data Load /Enable to UEM			
AUE	DUEMCTRL(3		1.8∖ Bus	1.8V digital interface between UPP (MCU) and UEM, Bi-directional Control Bus "CBUS"							
0	UEMINT	UEM	UPP	0 ut	Di g	0/1.8 V		UEM Interrupt			
1	CBUS- CLK	UPP	UEM	In			1.08 MHz TDMA/ 1.00MHz GSM	Clock for Control/Audio Converters in UEM			
2	CBUSDA			In/ O u				Control Data			
3	CBUSEN X			In				Control Data Load Signal			
AUD	DIODATA(1:0)*		1.8\ cloc	/ digit ked b	al audio in y CBUSCLK	terface betwee	en UPP and UEM audio codec, PDM data			
0	EARDAT A	UPP	UEM	In	Di g	0/1.8 V		PDM Data for Downlink Audio, clocked by CBUSCLK			
1	MIC- DATA	UEM	UPP	0 ut				PDM Data for uplink Audio, clocked by CBUSCLK			
ISIN	/IF(2:0)*			1.8\	/ digit	al SIM sigr	als between U	PP and UEM, wired, not used			
0	SIMIO- DAI	UPP	UEM	In / O u	Di g	0/1.8 V		Data to/from SIM			

CCS Technical Documentation

1	SIMCLKI			In			Max. 3.25MHZ GSM / max. 4.86MHz TDMA	Clock to SIM				
2	SIMIOC- TRL			In				Control for SIM Interface				
PUS	5L(2:0)*			Pow	Power-Up & Sleep Control lines							
0	PURX	UEM	UPP RFIC	0 ut	Di g	0/1.8 V		Power Up Reset, 0 at reset				
1	SLEEPX	UPP	UEM	In				Power Save Functions, 0 at sleep				
2	SLEEP- CLK	UEM	UPP	0 ut			32 kHz	32 kHz Sleep Clock				
IAC	CDIF(5:0)^			UEV BB I	ntern 1	al 1.8V Digi	ital Accessory E	Buses between UPP and 2.7V level shifter				
IAC 0	IRTX	UPP	UEM	UEN O ut	ntern 1 Di g	al 1.8V Digi 0/1.8 V	1.152 Mbit/s max	Juses between UPP and 2.7V level shifter				
IAC(0 1	IRTX IRRX	UPP UEM	UEM UPP	BB I UEN O ut In	ntern / Di g	al 1.8V Digi 0/1.8 V	1.152 Mbit/s max	Juses between UPP and 2.7V level shifter Infrared Transmit Infrared Receive				
1AC0 0 1 2	IRTX IRRX MBUSTX	UPP UEM UPP	UEM UPP UEM	BB I UEN Ut In In	ntern 1 Di g Di g	al 1.8V Digi 0/1.8 V 0/1.8 V	1.152 Mbit/s max 9k6 b/s	Infrared Transmit Infrared Receive MBUS Transmit				
IAC(0 1 2 3	IRTX IRRX MBUSTX MBUSRX	UPP UEM UPP UEM	UEM UPP UEM UPP	BB I UEN Ut In In O ut	ntern 1 Di g Di g	al 1.8V Digi 0/1.8 V 0/1.8 V	1.152 Mbit/s max 9k6 b/s <7Mb/s	Infrared Transmit Infrared Receive MBUS Transmit MBUS Receive / FDL CIk				
IAC(0 1 2 3 4	IRTX IRRX MBUSTX MBUSRX FBUSTXI	UPP UEM UPP UEM UPP	UEM UPP UEM UPP UEM	BB I UEN O ut In O ut In	ntern J Di g Di g Di g	al 1.8V Digi 0/1.8 V 0/1.8 V 0/1.8 V	1.152 Mbit/s max 9k6 b/s 9k6 b/s <7Mb/s <115kb/s <1Mb/s	Infrared Transmit Infrared Receive MBUS Transmit MBUS Receive / FDL Clk FBUS Transmit / FDL Tx				

Table 8: UEM Block Signals to BB & RF

Ri p #	Signal Name DAMPS/ GSM19 00	Connec from	ted to	UEM I/O		Signal Properties A/DLevels Freq./ Timing resolution		Description / Notes			
SLO	WAD(6:0)*			Slov	Slow Speed ADC Lines, UEM external						
0	BSI	BAT- TERY	UEM	In	Ana	0 -2.7V		Battery Size Indicator/FDL init			
1	BTEMP							Battery Temperature			
5	RXTEMP	RF/ NTC resis- tor	UEM	In	Ana	0 -2.7V		Rx band filter Temperature, Meas- ured from NTC resistor			

CCS Technical Documentation

6	PATEMP	RF; PDMo d NTC						Tx PA Temperature, Measured from Power Detection Module				
RFC	ONV(9:0)*			RF-	RF- BB Analog Signals: Tx I&Q, Rx I&Q and ref							
0	RXIP	RFIC	UEM	In	Ana	1.4Vpp max. diff. 0.5Vpp typ bias 1.30V		Differential positive/negative in- phase Rx Signal				
1	RXIN											
2	RXQP							Diff. Positive/negative quadrature phase Rx Signal				
3	RXQN											
4	TXIP	UEM	RFIC	O ut	Ana	2.2Vpp max. diff. 0.6VppTy p Bias 1.30V		Differential positive/negative in- phase Tx Signal				
5	TXIN											
6	TXQP							Differential positive/negative quad- rature phase Tx Signal				
7	TXQN											
9	VREFRFO 1	UEM	RFIC	0 ut	Vref	1.35 V		RF IC Reference voltage from UEM				
RFA	UXCONV(2:0))		RF-I	RF-BB auxiliary analog Signals							
0												
1	TXP- WRDET	TXPow . Det. Mod.	UEM	In	Ana	0.1-2.7V		Tx PWR Detector Output to UEM				
2	AFC	UEM	VCTC XO	0 ut	Ana	0.1-2.4V	11bits	AFC control voltage to VCTCXO, default about 1.3V				
IRIF	no bus no r	ips		UEN	/I 2.7V s	ignals to IR	Module					
(0)	IRLEDC	UEM	IR	0 ut	Dig	0/2.7V	9k6 -1 M bit/s	IR Tx signal to IR Module				
(2)	IRRXN	IR	UEM	In	Dig	0/2.7V	9k6 -1 M bit/s	IR Receiver signal from IR Module				
UID	RV lines, no	bus		UEN	/ drivers	s: sinking ou	tputs to Buzz	zer, Vibra, KLED, DLED				

0	BUZZO	UEM	Buzze r	0 ut	Dig	350mA max. / Vbatt	1-5 kHz, PWM vol	Open collector sink switch output for Buzzer. Frequency controlled for pitch, PWM for volume
1	VIBRA	UEM	Vibra	0 ut	Dig	135mA max / Vbatt	64/128/ 256/ 512 Hz	Open collector sink switch/Fre- quency/ PWM output for buzzer
3	DLIGHT	UEM	UI	0 ut	Dig	100mA / Vbatt	Switch/ 100Hz PWM	Open drain switch/PWM output for display light
4	KLIGHT	UEM	UI	0 ut	Dig	100mA / Vbatt	Switch/ 100Hz PWM	Open drain switch/PWM output for keylight
0	BUZZO	UEM	Buzze r	0 ut	Dig	350mA max. / Vbatt	1-5 kHz, PWM vol	Open collector sink switch output for Buzzer. Frequency controlled for pitch, PWM for volume
ACC	DIF lines, no	bus *		Wir	ed Digit	al Accessory	Interface.	
0	MBUS	UEM	Test Pad7/ bot- tom con- nec- tor	In / O ut	Dig	0/2.7V	9k6bit/s	MBUS bi-directional asynchronous serial data bus/FDL clock, 0-8MHz depends on project
1	FBUSTXO	UEM	Test Pad 2/ bot- tom con- nec- tor	0 ut	Dig	0/2.7V	9k6- 115kbit/s	FBUS asynchronous serial data out- put /FDL data out <1Mbit/s
2	FBUS- RXO	Test Pad 3/ bot- tom con- nector	UEM	In	Dig	0/2.7V	9k6- 115kbit/s	FBUS asynchronous serial data input/ FDL in, 0-8Mb/s depends on project
RTC	BATT lines, n	o bus *		Con	nector p	bads for Real	I Time Clock	back up battery, not used in NPM-2NX
0	VBACK	UEM	RTC- BATT	In / O ut	Vsup ply/ Chrg	+2-3.3V		For back up battery Li 4.8x1.4 2.5 mA 3.3V
0	GND	Glo- bal GND			0			0
HP	INTERNAL A	UDIO			I	1	1	
AUD	010(4:0)			HP I	nternal	analog ear &	& microphone	e IF between UEM and Mic/Ear circuitry

CCS Technical Documentation

0	EARP	UEM	Ear- piece	0 ut	Ana	1.25V	Audio	Differential signal to HP internal Ear- piece. Load resistance 32 ohm.
1	EARN							
2	MIC1N	Mic	UEM	In	Ana	100mVp p max diff.	Audio	Differential signal from HP internal MIC, 2mV nominal
3	MIC1P							
4	MICB1	Mic	UEM	0 ut	V bias	2.1V typ./ <600 uA	DC Bias	Bias voltage for internal MIC
EXT	ERNAL AUD	IO INTER	FACE					
XAU	JDIO(9:0)*			Exte	ernal Au	dio IF betwe	en UEM and	X-audio circuitry
0	HEADINT	SysCo n/ HSet	UEM	In	Dig	0/2.7V		Input for Headset Connector Head- Int Switch
1	HF	UEM	SysCo n/ HSet	0 ut	Ana	1.0Vpp bias 0.8V	Audio	External Earpiece Audio Signal
3	MICB2	UEM	SysCo n/ Heads et	0 ut	V bias	2.1V typ/ 600 uA		Bias voltage for external MIC
4	MIC2P	SysCo n/ Head- set	UEM	In	Ana	200mVp p max diff	Audio	Differential signal from external MIC
5	MIC2N							
6	HOOKINT	Sys Con	UEM	In	Ana / Digi	02.7V	DC	HS Button interrupt, External Audio Accessory Detect (EAD)
CHA	RGER interfa	ace						
СНА	ARGER lines,	no bus *						
0	VCHARI N	Charg er	UEM	In	Vch r	< 16V < 1.2A	DC	Vch from Charger Connector, max.20V
	PWMO	Charg er con- trol	UEM	0 ut	Ana	0-2.7V	DC	PWM control for 3-wire charger
2	GND				GN D			GND from/to Charger connector

NPM-2NX System Module

CCS Technical Documentation

PWI	RONX *			Pow	ver On S	ignal, see als	so the UI/key	board
	PWRONX	UI	UEM	in	Dig	0/Vbatt		Power button
2	GND				GN D			GND for Power button
VBB	, Globals ins	tead of Bu	JS *		Regula	ated BB Sup	ply Voltages	
	VANA	UEM		0 ut	Vre g	2.78 V +- 3%	80mA max.	Disabled in sleep mode.
	VFLASH1	UEM		0 ut	Vre g	2.78 V +- 3%	70mA max.	1.5mA max. in sleep mode. VFLASH1 is always enabled after power on.
	VFLASH2	UEM		0 ut	Vre g	2.78 V +- 3%	40mA max.	VFLASH2 is disabled by default.
	VIO	UEM		0 ut	Vre g	1.8 V +- 4.5%	150mA max.	1.5mA max. in sleep mode. VIO is always enabled after power on.
	VCORE	UEM		0 ut	Vre g	1.0-1.8 V +- 5%	200mA max.	200 uA max. in sleep mode.
	VSIM	UEM	SIM	0 ut	Vre g	1.80/ 3.0V	25 mA max.	500 uA max. in sleep mode
	VBACK	UEM		In / O ut	Vre g	3.0 V		No external use, only for RTC battery charging/discharging, not used in NPM-2NX

UPP Block signals

Table 9: UPP to UEM Interfaces

RFCONVDA(5:0)	See UEM / RFCONVDA(5:0)
RFCONVCTRL(2:0)	See UEM / RFCONVCONTR(2:0)
AUDUEMCTRL(3:0)	See UEM / AUDUEMCTRL(3:0)
AUDIODATA(1:0)	See UEM / AUDIODATA(1:0)
ISIMIF(2:0)	See UEM / ISIMIF(2:0)
PUSL(2:0)	See UEM / PUSL(2:0)
IACCDIF(5:0)	See UEM / IACCDIF(5:0)

Table 10: UPP - RF Interfaces

RFCLK & GND	See BB_RF IF Conn / RFCLK (not BUS)				
RFICCNTRL(2:0)	See BB_RF IF Conn / RFICCNTRL(2:0)				
GENIO(28:0)/rips 8, 9 and 11	See BB_RF IF Conn / GENIO(28:0)				

NOKIA **CCS** Technical Documentation

Ri p #	Signal Name DAMPS / GSM19 00	Connec from	upp I/o	,	Signal Proj A/DLeve Timing re	oerties IsFreq./ esolution	Description / Notes				
UPP	UPP Globals, no bus, no rip					Power supplies and GND					
	VIO	UPP	UEM	In	Vr eg	1.8 V +- 4.5%	20mA max.	UPP I/O power supply			
	VCORE	UPP	UEM	In	Vr eg	1.0-1.8 V +- 5%	100mA max.	UPP logics and processors power sup- ply, settable to reach the speed for various clock frequencies.			
	GND	UPP	VSSXXX			0		Global GND			

Table	12:	UPP	to	Memory	Interface	es

Rip #	Signal Name DAMPS / GSM19 00	Connec from	ted to	UPP I/O)	Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes
MEMA	ADDA(23:0)	*			Exte	ernal Memory	y Address / D	ata Bus
0- 15	EXTAdD a 0:15	UPP	Mem- ory	In / O ut	Di g	0-1.8 V	25 / 150 ns	Burst Flash Address (0:15) & Data (0:15) Direct Mode Address (0:7)
16- 23	EXTAd 16:23	UPP	Mem- ory	0 ut	Di g	0-1.8 V	25 / 150 ns	Burst Flash Address (16:23) Direct Mode Data (8:15)
MEMO	CONT(9:0) *			Exte	ernal I	Memory Cont	trol Bus	
0	ExtWrX	UPP	Mem- ory	0 ut	Di g	0-1.8 V		Write Strobe
1	ExtRdX	UPP	Mem- ory	0 ut	Di g	0-1.8 V		Read Strobe
2	FIs2CSX	UPP	Mem- ory	0 ut	Di g	0-1.8 V		2nd Flash Chip Select, not used in NPM-2NX
3	FIsBAA X	UPP	Mem- ory	0 ut	Di g	0-1.8 V		Flash Burst Address Advance Direct Mode Address (16)
4	FIsPS	UPP	Mem- ory	In / O ut	Di g	0-1.8 V	25 ns	Burst Mode Flash Data Invert Direct Mode Address (17)

Г

CCS Technical Documentation

5	FIsAVD X	UPP	Mem- ory	0 ut	Di g	0-1.8 V		Flash Addr Data Valid/ Latch Burst Addr Direct Mode Address (18)		
6	FIsClk	UPP	Mem- ory	0 ut	Di g	0-1.8 V	50 MHz	Burst Mode Flash Clock Direct Mode Address (19)		
7	FIsCSX	UPP	Mem- ory	0 ut	Di g	0-1.8 V		Flash Chip Select		
8	FIsRDY	UPP	Mem- ory	In	Di g	0-1.8 V		Ready Signal for Flash		
9	FIsRSTX	UPP	Mem- ory	In	Di g	0-1.8 V		Reset Signal for Flash		
GENIC)(28:0)				Mer	Memory Write Protect from GENIO bus				
23	GENIO(23)	UPP	Mem- ory	0 ut	Di g	0-1.8 V		Write Protect, O-active		

Table 13: UPP GENIOs (may be described in other tables as well)

Ri p #	Signal Name DAMPS, GSM19 00	Connect from	ted - to	upp I/O		Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes
GEN	IIO(28:0)			Gener	ral I/O P	ins, The bo	ld font lines are	e only valid one for product.
0	Secu- rity bypass	UPP		In	Dig	0-1.8 V	In / Pull Up	R&D only
1	EmuP- resent	UPP		In	Dig	0-1.8 V	In / Pull Up	R&D only
2	Not Used	UPP		In/ Out	Dig	0-1.8 V	In / Pull Up	
3	Not Used	UPP		In/ Out	Dig	0-1.8 V	In / Pull Down	
4	LCDRstX	UPP	Dis- play	Out	Dig	0-1.8 V	Out / 0	Display Reset
5	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
6	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
7	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
8	TX_enab le	UPP	RF	Out	Dig	0-1.8 V	Out / 0	TX power enable

CCS Technical Documentation

9	TX_gain _ctrl	UPP	RF	Out	Dig	0-1.8 V	Out / 0	TX gain control
10	IRModS D	UPP	IR Mod- ule	Out	Dig	0-1.8 V	In / Pull Down	IR Module Shut Down
11	BandSel	UPP	RF/ FMR	Out	Dig	0-1.8 V	In / Pull Up	Lo/Hi Band Selection
12	AData	UPP		In/ Out	Dig	0-1.8 V	In / Pull Down	
13	IRMod- uleFIR	UPP	IR / RF	Out	Dig	0-1.8 V	In / Pull Up	Fast IR
14	Not Used	UPP		In	Dig	0-1.8 V	In / Pull Down	
15	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
16	Not Used	UPP		In	Dig	0-1.8 V	In / Pull Up	
17	Not Used	UPP		In	Dig	0-1.8 V	In / Pull Up	
18	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
19	Not Used	UPP	LPRF/ RF	In/ Out	Dig	0-1.8 V	In / Pull Down	LPRF Data In / Accessory Buffer Enable / PAGain
20	Not Used	UPP	LPRF	Out	Dig	0-1.8 V	Out / 0	LPRF Data Out
21	Not Used	UPP	LPRF	Out	Dig	0-1.8 V	In / Pull Up	LPRF Sync /Accessory Mute
22	Not Used	UPP	LPRF	Out	Dig	0-1.8 V	In / Pull Down	LPRF Interrupt/Accessory Power Up
23	FLSWRP X	UPP	FLAS H	Out	Dig	0-1.8 V	Out / 1	Write Protect, O-active when pro- tected
24	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Up	
25	Not Used	UPP		In/ Out	Dig	0-1.8 V	In / Pull Up	
26	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
27	Not Used	UPP		In/ Out	Dig	0-1.8 V	In / Pull Up	
28	Not Used	UPP		Out	Dig	0-1.8 V	Out / 1	

Ri p #	Signal Name DAMPS/ GSM190 O	Connec from	ted to	UPF I/O)	Signal Pro A/DLeve Timing re	perties IsFreq./ esolution	Description / Notes
KEY	B(10:0) *			Key	board	matrix		
1	P01	UPP	KEY- BOAR D	In	Di g	0/1.8 V		Keyboard Matrix Line S1
2	P02							Keyboard Matrix Line S2
3	P03							Keyboard Matrix Line S3
4	P04							Keyboard Matrix Line S4
5	P10	UPP	KEY- BOAR D	In	Di g	0/1.8 V		Keyboard Matrix Line R0
6	P11							Keyboard Matrix Line R1
7	P12							Keyboard Matrix Line R2
8	P13							Keyboard Matrix Line R3
9	P14							Keyboard Matrix Line R4
LCD	UI lines, no b	ous *		Disp	olay &	UI Serial Int	erface	
0	LCDCam- Clk	UPP	DIS- PLAY	O ut	Di g	0/1.8 V	Max. 4.86MHz TDMA/ max. 6.5MHz GSM	Data clock for LCD serial bus, the speed may vary according the used mode and direction requirements
1	LCD- CamTxDa			I/ O ut	Di g			Serial Data to/from LCD
2	LCDCSX			0 ut	Di g			LCD Chip Select
2	GENIO(4)			0 ut	Di g			LCD Reset, 0-active

Table 14: UPP to Key/Display Interfaces

CCS Technical Documentation

MEMORY Block Interfaces

				Table ⁻	15: Me	mory interfa	ace signals				
Rip #	Signal Name DAMPS / GSM19 00	Connected from to		1/0		Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes			
MEMAD	DA(23:0)	1		Exte	External Memory Addr/Data Bus						
0-15	EXTADD A 0:15	Mem- ory	UPP	In/ Ou	Dig	0/1.8 V	25 / 150 ns	Burst Flash Address (0:15) & Data (0:15) Direct Mode Address (0:7)			
16- 23	EXTAD 16:23	Mem- ory	UPP	In	Dig	0/1.8 V	25 / 150 ns	Burst Flash Address (16:23) Direct Mode Data (8:15)			
MEMCO	ONT(8:0)			Exte	rnal Me	mory Contro	l Bus				
0	ExtWrX	Mem- ory _WE	UPP	In	Dig	0/1.8 V		Write Strobe			
1	ExtRdX	Mem- ory _OE	UPP	In				Read Strobe			
2											
3	(FIsBAA X) VPPC- TRL	Mem- ory (VPP)	UPP	In				VPP=1.8V,=> VIO used internally for VPP VPP=5/12V, VPP used			
4	FIsPS	Mem- ory PS	UPP	In/ Ou t			25 ns	Burst Mode Flash Data Invert Direct Mode Address (17)			
5	FIsAVD X	Mem- ory _AVD	UPP	In				Flash Addr Data Valid/ Latch Burst Addr Direct Mode Address (18)			
6	FISCLK	Mem- ory CLK	UPP	In			50 MHz	Burst Mode Flash Clock Direct Mode Address (19)			
7	FIsCSX	Mem- ory _CE	UPP	In				Flash Chip Select			
8	FIsRDY	Mem- ory RDY	UPP	Ou t				Ready Signal for Flash			
9	9 FISRSTX Mem- ory_RP UPP			Ou t				Flash reset, 0 active, (FLSRPX)			
GENIO(28:0)			Gene	eral I/O	Pin used for	extra control				
23	FLSWR PX	Mem- ory _WP	UPP	Ou t	Dig	0/1.8 V	0	Write Protect, 0-active protected			
Globals				Powe	er suppl	ies and prod	uction test pa	ad			

CCS Technical Documentation

VIO	UEM	FLAS H	In	PW R	1.8 V	FLASH power supply
VPP	Prod TP 6	FLAS H	In	Vpp	0/(1.8) / 5/12V	FLASH Programming/erasing voltage/control. 5 or 12 V exter- nal voltage for high speed pro- gramming
GND						Global GND

IR Block Interfaces

Table 16: IR Block Signal Description

Rip #	Signal Name DAMPS/ GSM190 O	Conne to - fr	octed rom	I/O		Signal Properties A/D LevelsFreq./ Timing resolution		Description / Notes			
IRIF, n	o bus no rips	*		Modu	Module IR Interface						
(0)	IRLEDC	UEM	IR	In	Dig	0/2.7V	9k6 -1 M bit/s	IR Tx signal to IR Module			
(2)	IRRXN	IR	UEM	Out	Dig	0/2.7V	9k6 -1 M bit/s	IR Receiver signal from IR Module			
GENIC)(28:0)			Gene	General I/O Bus						
10	GENIO10	UPP	IR	In	Dig	0/1.8V		IR Module Shutdown, discrete inverting level shifter to 2.7V			
Globa	ls	•					·				
	VBAT	Bat- tery	IR	In	Vba t	3.6V	l = 500mA peak. @Tx	Transmitter IR LED power supply from Battery 3.6V nominal, 35.1V total range			
	VFLASH1	UEM	IR	In	Vre g	2.78 V +- 3%	I=90uA max. @ Rx	IR Receiver and Transmitter power supply			
	GND										

SIM Block Interfaces

Table 17: SIM connector interface

Rip #	Signal Name DAMPS/ GSM1900	Connected to - from	SIM I/O	Signal Properties A/D LevelsFreq./ Timing resolution	Description / Notes
----------	----------------------------------	------------------------	---------	--	------------------------

CCS Technical Documentation

1	SIMCLK	UEM	In	Dig.	0-1.8/3.0V	4.86MHz max. in TDMA and 3.25Mhz max.in GSM	SIM clock
2	SIMRST	UEM	In	Dig.	0-1.8/3.0V		Reset
3	VSIM	UEM	In	Vreg	1.8/3.0V	25mA max.	Programma- ble 1.8 or 3.0V
4	GND			Gnd			Ground
5	VPP						Not Used
6	SIMDATA	UEM	I/O	Dig.	0-1.8/3.0V		Data

Audio Interfaces

Ri p #	Signal Name DAMPS/ GSM19 00	Connec from -	ted - to	audio I/o		Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes
HP I	NTERNAL AL	IDIO						
AUD	10(4:0) *			HP	Intern	al microph	one and earpie	ce IF between UEM and Mic/Ear circuitry
0	EARP	UEM	Ear- piece	0 ut	O A 1.25V Audio ut n a		Audio	Differential signal to HP internal Ear- piece. Load resistance 32 ohm.
1	EARN							
2	MIC1N	Mic	UEM	In	A n a	100mV pp max diff.	Audio, AC coupled to UEM	Differential signal from HP internal MIC
3	MIC1P							
4	MICB1	Mic	UEM	0 ut	V bi as	2.1V typ./ <600 uA		Bias voltage for internal MIC
Bott	om Connect	or		HPI	Intern	al microph	one IF betweer	Bottom connector and Mic/Ear circuitry
	MIC+	Mic	Audio -UEM	In	A n a	2mV nom	Audio	Mic bias and audio signal. Microphone mounted into bottom connector
				0 ut	Bi as	2V2koh m	DC bias	

NPM-2NX System Module

CCS Technical Documentation

	MIC-			In	G N D	0 (GND)		AGND coupled to GND at UEM			
Earpiece Connector Pads					HP Internal IF between Earpiece and Mic/Ear circuitry						
	"1"~EAR P	EAR	Audio - UEM- EAR P/N	0 ut	A n a	1.25V	Diff DC coupled Audio	Differential audio signal to earpiece 32 ohm			
	"2"~EAR N										

Table 19: External Audio

Rip #	Signal Name DAMPS / GSM19 00	Connected from to	audio I/o	Signal Properties A/DLevelsFreq./ Timing resolution	Description / Notes						

EXTERNAL AUDIO INTERFACE

XAUD	IO(9:0)*			Exte	ernal /	Audio IF bet	ween UEM and	X-audio circuitry			
0	HEAD- INT	SysCo n/HSet	UEM	0 ut	Di g	0/2.7V		Output to UEM for Headset Connec- tor "HeadInt" Switch			
1	HF	UEM	SysCo n/ HSet	In	A n a	1.0Vpp bias 0.8V	Audio	External Earpiece Audio Signal			
3	MICB2	UEM	SysCo n/ Heads et	0 ut	V bi as	2.1V typ/ 600 uA		Bias voltage for external MIC			
4	MIC2P	SysCo n/ Head- set	UEM	0 ut	A n a	200mV pp max diff	Audio	Differential signal from external MIC			
5	MIC2N										
6	HOOKIN T	Sys Con	UEM	0 ut	A n a/ Di gi	02.7V	DC	HS Button interrupt, External Audio Accessory Detect (EAD)			
Bottom Connector				HP cuit	HP Internal microphone IF between Bottom connector and Mic/Ear cir- cuitry						

CCS Technical Documentation

XMIC	HS/HF Mic	Audio -UEM	In	A n a	2/60mV nom diff	Audio	Headset Mic bias and audio signal 2mV nominal. HF Mic signal 60mV nominal. Differential symmetric input. Accessory detection by bias loadind (EAD channel of slow ADC of UEM) Hook interrupt by heavy bias loading
			0 ut	Bi as	2.1V bias/ 1kohm	DC bias	
SGND			In	A n a	2/60mV nom diff GND/ 1kohm	Audio	Mic - connected to SGND trough lower part of splitted symmetric load resistor (2 x 1 kohm).
XEAR	HS/HF EAR/ Amp.	Audio -UEM	In	A n a	100 mV nom diff	Audio	Quasi differential DC-coupled ear- piece/HF amplifier signal to acces- sory. DC biased to 0.8V; XEARN a quiet reference although have signal when loaded due to internal series resistor.

Key/Display blocks

Tabla	20				C:	D
lable	20:	KEY	RIOCK	Interrace	Signai	Description

Ri p #	Signal Name DAMPS / GSM19 00	Connect from	ted - to	KEY I/O	/	Signal Pro A/DLeve Timing re	perties IsFreq./ esolution	Description / Notes
KEYI	3(10:0)	I	1	кеу	board	matrix, Rolle	егкеу	1
0	P00	Key- Board	UPP	0 ut	Di g	0/1.8 V		KeyBoard Matrix Line
1	P01	Key- Board						KeyBoard Matrix Line
2	P02	Key- Board						Keyboard Matrix Line
3	P03	Key- Board						Keyboard Matrix Line
4	P04	Key- Board						Keyboard Matrix Line
5	P10	Key- Board						Keyboard Matrix Line
6	P11	Key- Board						Keyboard Matrix Line

7	P12	Key- Board						Keyboard Matrix Line
8	P13	Key- Board						Keyboard Matrix Line
9	P14	Key- Board						Keyboard Matrix Line
10	P15	Key- Board						KeyBoard Matrix Line
PWR_KEY			Power Key, not a member of the keyboard matrix					
	PWR_KE Y	Power key	UEM	0 ut	Di g	0/Vbatt		Power Key, not a member of the key- board matrix

Table 21: Display block Signal Description

Ri p #	Signal Name DAMPS / GSM19 00	Connect from	ted - to	Disp I/O	olay	Signal Proj A/DLeve Timing re	perties lsFreq./ esolution	Description / Notes
LCDUI(2:0)			Disp	olay &	UI Serial Int	erface		
0	LCD- CAM- CLK	UPP	Displ.	In	Di g	0/1.8 V		Clock to LCD
1	LCD- CAMTX DA	UPP	Displ.	In / O ut	Di g	0/1.8 V		Data to/from LCD
2	LCDCSX	UPP	Displ.	In	Di g	0/1.8 V		LCD Chip Select
GENIO(28:0)			Gen	General I/O Pins				
4	LCDRstX	UPP	Dis- play	0 ut	Di g	0/1.8 V	Out / 0	Display Reset, 0-active

Baseband External Connections

 Table 22: System Connector Interface

Ri p #	Signal Name DAMPS/ GSM19 00	Connected from to	Sys Conn I/O	Signal Properties A/DLevelsFreq./ Timing resolution	Description / Notes	
Bottom Connector			HP Internal microphone IF between Bottom connector and Mic/Ear circuitry			

CCS Technical Documentation

	XMIC	HS/ HF Mic	Audio -UEM	In	A n a	2/60mV nom diff	Audio	Headset Mic bias and audio signal 2mV nominal. HF Mic signal 60mV nominal. Differential symmetric input. Accessory detection by bias loading
				0 ut	Bi as	2V2koh m	DC bias	
	SGND			In	A n a	2/60mV nom diff	Audio	
	XEAR	HS/ HF EAR/ Amp.	Audio –UEM	In	A n a	100 mV nom diff	Audio	Quasi differential DC-coupled ear- piece/HF amplifier signal to accessory. DC biased to 0.8V; XEARN a quiet ref- erence although have signal when loaded due to internal series resistor. HS interrupt from bottom connector switch when plug inserted
СНА	RGER interfa	ace						
СНА	RGER lines, I	no bus *						
0	VCHARI N	Charg er	UEM	In	Vc hr	< 16V < 1.2A	DC	Vch from Charger Connector, max.20V
	CHRG_C TRL	UEM	PWM O	O ut	A n a	0-2.7V	DC	PWM Charger control for 3-wire charger
2	GND				G N D			GND from/to Charger connector

Table 23: Battery connector interface

Ri p #	Signal Name DAMPS / GSM19 00	Connect from	ted - to	Batt Conn I/O		Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes
	GND	Glo- bally	Batt -					Global GND
	VBAT		Batt. +		V ba tt	3.0-5.1V	DC	Battery Voltage
	BSI		UEM		A n a A n a	0-2.7V	Pull down res	Battery Size Indicator Resistor, 100 kohm pull up to 2.78V(VFLASH1)

NPM-2NX System Module

CCS Technical Documentation

	BTEMP		UEM					Btemp NTC Resistor, 100 kohm pull up to 2.78V(VANA)
--	-------	--	-----	--	--	--	--	---

Test Pattern for production tests

Table 24: Test Pattern Interface Signal Description

Rip #	Signal Name DAMPS/ GSM190 O	Connec from	ted to	UI I/O		Signal Properties A/DLevelsFreq./ Timing resolution		Description / Notes
2	FBUSTX / FDLTX	Test Point	UEM	0 ut	Di g	0/2.7V		FBUS asynchronous serial data output / FDL TxData
3	FBUSRX / FDLRX	Test Point	UEM	In	Di g	0/2.7V		FBUS asynchronous serial data input / FDL RxData
6	VPP	Test Point	Mem- ory	0 ut	A n a	0/5/12V		External Flash Programming Voltage for Flash Memory
7	MBUS / FDLCLK	Test Point	UEM	In / O ut	Di g	0/2.7V	9k6bit/s	MBUS bi-directional asynchronous serial data bus/FDL Clock
8	GND	Test Point	BB					Ground

General about testing

Phone operating modes

Phone has three different modes for testing/repairing phone. Modes can be selected with suitable resistors connected to BSI- and BTEMP- lines as following:

Mode	BSI- resistor	BTEMP- resistor	Remarks
Normal	68k	47k	
Local	560_ (<1k_)	What ever	
Test	3.3k (> 1k)	560_ (<1k_)	Recommended with baseband testing. Same as local mode, but making a phone call is possible.

 Table 25: Mode selection resistors

The MCU software enters automatically to local or test mode at start-up if corresponding resistors are connected.

Note: The baseband does not wake up automatically when the battery voltage is connected (normal mode). The power can be switched on by

- Pressing the power key

- connecting a charger

RC-alarm function

In the local and test mode the baseband can be controlled through MBUS or FBUS (FBUS is recommended) connections by a Phoenix service software.

RF Module

Introduction

This document describes the RF module of the AMPS/TDMA/GSM engine of NPM-2NX. The RF module is based on the same concept which has also been used in NPW-1NB. NPM-2NX is the first project to implement GSM based on this concept.

NPM-2NX requires the following modes of operation which impact on the RF

- AMPS
- TDMA800
- TDMA1900
- GSM1900
- E-OTD for 911 calls.

Requirements

The specifications for AMPS and dual-band TDMA are found in TIA/EIA-136A with the RF parameters defined in 270. AMPS Tx PL is 25.7 dBm and TDMA 27.3 dBm

GSM850 and 1900 RF requirements are mainly found in GSM specifications 3GPP TS 05.05 v8.6.0 (rel '99), known as GSM05.05, and GSM 05.08. NPM-2NX is a power class 1 product for GSM1900 (nominal maximum output power 29.5 dBm).

FCC parts 22 and 24 also apply and are more stringent in some cases than the cellular specifications.

E-OTD is a position location system based on triangulation from multiple BTS. Synchronisation to the BTS transmissions is required which necessarily takes longer than a neighbour level measurement.

Design

The phone comprises a single sided 8 –layer PWB. It is slightly longer and narrower than NPW-1NB. An internal antenna is located at the top of the phone.

Interfaces

External Signals and Connections

Table 26:					
Connection Name	Code	Specifications / Ratings			
Antenna connector	5429023	Manufacturers spec in EDMS			

CCS Technical Documentation

315	iterface 4370	nd interface /1.1 4370815
305	4370	4370805

Environmental Specifications

Normal and extreme voltages

Table 27:							
Maximum Ratings							
Parameter	Rating						
Normal battery voltage, idle mode	3.5 V						
Absolute maximum voltage	5.1 V						
Regulated supply voltage	2.78 V						
Voltage reference	1.334-1.366 V						

R&D testing uses a minimum supply voltage of 3.3V. The battery internal impedance is 0.3 ohms maximum giving 3.0V on the PA, the minimum voltage at which the PA is specified. By the addition of suitable capacitors to the dummy battery packs this performance can be modelled on the RF test system.

In order to accommodate the GSM TA requirements of nominal voltage +/-15% the nominal voltage for testing is set to 3.9V

Temperature Conditions

AMPS/TDMA RF specifications are met within

-ambient temperature: -30...+ 60 °C

GSM RF specifications are met within

-ambient temperature: -10...+ 55 °C

Storage temperature range:

-40 to + 85 $^{\circ}$ C

RF components should meet specification within:

-ambient temperature: -30...+ 85 °C

Vibration and Free Fall

These requirements are defined in NMP standard product requirement documents.

The module meets the module phase error requirements under the following conditions:

Frequency:	ASD (Acceleration Spectral Density)
10 100 Hz	$3 \text{ m}^2/\text{s}^3 (0.0132 \text{ g}^2/\text{Hz})$
100 500 Hz	thereafter -3 dB/octave

Humidity and Water Resistance

These requirements are defined in NMP standard product requirement documents.

Relative humidity range: 5... 95%

This module is not protected against water. Condensation or splashed water might cause malfunction momentary. Long term wetness will cause permanent damage.

ESD strength

These requirements are defined in NMP standard product requirement documents.

Main Technical Specifications

RF frequency plan

Different frequency plans are used for AMPS/TDMA and GSM. The GSM frequency plan with 133.2 MHz Rx IF causes problems in AMPS/TDMA mode. The AMPS/TDMA frequency plan with 134.04 MHz Rx IF cannot give a 200 kHz channel spacing. The fundamental requirement is that the Rx IF frequency is not a multiple of the VHF reference frequency. If it is the mixer generates a variable DC offset which cannot be readily compensated.

Tx IFs are above the Rx IF by the duplex spacing, which is 45 MHz in lower band, 80MHz for GSM1900, 80.04 MHz for TDMA1900. The UHF VCO frequency is the same for both Tx and Rx.

A 19.2 MHz crystal reference frequency is used and the BB clock is synthesized from that in Safari_GTE. For AMPS/TDMA the BB clock is 19.44 MHz, as NPW-1NB. For GSM the BB clock is 13 MHz.

NOKIA CCS Technical Documentation

DC Characteristics

Power Distribution Diagram

Figure 14: Power Distribution Diagram

Regulators

Regulator name	Output voltage (V)	Regulator Max. current (mA)	RF Typ Current Requirement (mA)	RF Max Current Requirement (mA)	Notes
VR1A	4.75 ± 3%	5	2	3	10mA total for VR1A and VR1B
VR1B	4.75 ± 3%	5	3.8	5	
VR2	2.78 ± 3%	100	38+53 =91	44+61=105	
VR3	2.78 ± 3%	20	2.5+5=8	3+5=8	
VR4	2.78 ± 3%	50	29	40	
VR5	2.78 ± 3%	50	5	5	
VR6	2.78 ± 3%	50	5	5	
VR7	2.78 ± 3%	45	23.3/ 32.3+9.5=32. 8/41.8	42+11.5 =53.5	
IPA1, IPA2	2.7 max.	5 ± 6%	3	3.3	
VREFRF01	1.35 ± 1.15%	100uA		5nA	
VFLASH1	2.78 ± 3%	70	2.4	3	

Regulators VR2 and VR7 could potentially be overloaded in absolute worst case conditions. Such an overload will not affect the reliability of the phone but could mean that the regulator is no longer fully specification compliant. RF current self tests in production is used to monitor the number of phones that this applies to.

The figures are divided between Safari_GTE + discretes (and LB/HB for typical).

Functional Description

Block diagram

NPM-2NX RF Block diagram is shown below. This has been obtained from DCA00035 in DocMan with the BB blocks removed for clarity.

Figure 15: Block diagram of the NPM-2NX RF module

Architecture contains SAFARI_GTE RF IC, dual PA module which included both 900&1900 band PAs, transmitter dual upconverter which includes drivers, Power detector module, VCTCXO module, VCO and discrete LNA module for 1900 band.

Receiver

The receiver is a dual band single conversion linear receiver. Received signal is fed via diplexer (band selection) to the duplex filter and then to LNA. After LNA the signal is fed to RX band filter and then to the mixer. The mixer converts to signal to intermediate frequency (IF) 133.2 or 133.04 MHz (GSM/TDMA) The IF signal is filtered and fed to second mixer. The second mixer converts the signal into IQ baseband. The baseband signal is filtered and amplified. Then the signal is fed to baseband parts.

LNA is discrete solution on the upper band and integrated in Safari_gte on the lower band.

The IF filters reduce the linearity requirements of the following stages.

Frequency Synthesizers

NPM-2NX uses a single UHF LO and separate Rx and Tx VHF LOs. The synthesizers and some oscillator components are within Safari_gte.

The principal differences between NPW-1NB and NPM-2NX are reference frequency generation, switching time requirements and the frequency plan. The BB reference frequency is either 19.44 MHz or 13 MHz synthesized from the VCXO clock in Safari_gte.

There are 4 different physical PLLs: UHF, Rx-VHF, Txc-VHF and BB. The UHF has to operate in 3 different modes, so functionally there are 6 PLLs to consider. All the synthesizers are implemented in an updated version of Safari, Safari_GTE. This feature provides support for the 4GHz UHF operation to achieve very high switching speeds. NPM-2NX uses a 2GHz VCO, which is multiplied by 2. This will work as a 4GHz VCO. The UHF VCO is a discrete module.

TheRX- and BB VHF VCOs are implemented using the amplifier in Safari and discrete resonator components. An additional external amplifier may be used to reduce coupling between LOs.

A number of reference frequency options are supported. The objective is to use a 19.2 MHz VCTCXO for both AMPS/TDMA and GSM with the appropriate baseband clock derived in Safari_gte.

Transmitter

The Transmitter IF frequency is modulated by I/Q-modulator which is inside of SAFARI_GTE IC. The TX I and TXQ signals are generated in the UPP and they are fed differentially to the modulator. In analog mode the FM modulation is also generated in the I/Q modulator.

The transmission power control is done after modulator. The VGA of the SAFARI_GTE has 44 dB gain control range and is controlled by the serial bus.

The maximum output power from SAFARI_GTE at TX IF frequency is -10 dBm when signal is used as single-ended. If the output is used as differential output power can be -7 dBm. In SAFARI_GTE is one gain step which can increase the level of the signal up to -4 dBm but in this case linearity of the signal is not enough for TDMA operation. This gain step may be used in GSM operation mode.

The TX IF signal is fed to IF filters which filter broadband noise from modulator. Otherwise the noise at RX band from transmitter is at too high level.

The filtered signal is fed to external upconverter which use TX local from SAFARI_GTE. Both signals TX IF and TX LO are differential signals.

The upconverted signal is filtered to reduce image frequency signal. This reduction can save current in driver stage for Pas. The driver stages are integrated in the same chip as

the upconverter. The signal from driver stage is filtered with TX band filters and filtered signal is fed to PA module. The PA module has 50 ohm input and 50 ohm output so no extra matching is needed. The PA module includes both PAs 800 band and 1900 band PAs.

The signal from PA is fed to directional coupler which detects transmission level. This information is used in power control function. The 800 band transmission is fed to duplex filter which enables full duplex operation also in AMPS mode. The 1900 band transmission is fed to duplex filter.

Software Compensations

The following software compensations are in use in NPM-2NX

- Tx Power Levels vs. Temperature
 - •NTC in PDM calibrated at room temperature in FLALI
 - closed loop compensation in GSM/TDMA by measuring PDM off voltage
 - closed loop compensation in AMPS with NTC
 - •predictive compensation based on NTC or PDM
 - •reduced power levels at high NTC temperatures (>55 C)
 - AMPS power down at very high NTC values (>85 C)
 - Power Levels vs. Channel
 - •Tx calibrated on low and high channels in FLALI
 - •predictive and closed loop compensation applied
- Power levels vs. Battery Voltage
 - •output power level reduced at low battery voltages
- TX Power Up/Down Ramps
- TX IQ and DC offset compensation
 - •modulator tuned at FLALI. Magnitude error not tuned in AMPS/TDMA
- RX IQ and DC offset compensation
 - •DC offset compensation algorithm runs whenever the phone is switched on
- RSSI v frequency

- •Rx calibrated on five channels (including low, mid and high channels) in GSM FLALI
- •fixed cross band compensations used for AMPS/TDMA
- RSSI v temperature
 - •Rx NTC calibrated at room temperature in FLALI
 - •Rx gain compensated for temperature according to a linear relationship (GSM only)
 - AMPS/TDM use TX power detector NTC value for rx gain compensation (three compensation levels depending on temperature; not linear (operation)
- Iref v power, temp, mode and Vbat
 - •different Iref values are used at different PLS in AMPS/TDMA mode

RF Characteristics

Table 28: Main RF characteristics of D-AMPS and TDMA 1900 operation

	AMPS/TDMA800	TDMA1900
Receive frequency range	869 - 894 MHz	1930 – 1990MHz
Transmit frequency range	824 – 849 MHz	1850 – 1910 MHz
Duplex spacing	45 MHz	80 MHz
Channel spacing	30 kHz	
Number of RF channels	832	1997
Power Class	IV	IV
Nominal power on highest power level	25.7/27.3 dBm	27.3 dBm
Number of power levels	9 (PL2-10)	
Modulation Scheme	pi/4 DQPSK, FM, FSK	pi/4 DQPSK

Table 29: Main characteristics of GSM operation

	GSM1900
Receive frequency range	1930 – 1990MHz
Transmit frequency range	1850 – 1910 MHz
Duplex spacing	80 MHz
Channel spacing	200 kHz

Number of RF channels	299
Power Class	1
Max output power	29.5 dBm
Number of power levels	16
Modulation Scheme	GMSK

Receiver

Minimum requirements of the receiver are listed below.

Item	NMP requirement	Units / Notes
Туре	Linear, 1 IF	
Intermediate frequencies 1st IF	134.04	MHz
IF1 min 3 dB bandwidth	±20	KHz
Sensitivity, digital mode static ch (BER<3%) analog mode (SINAD>12dB)	-110 -116	dBm dBm
C/N for sensitivity, digital analog	10 3.5	dB dB
C/I for IMD, digital analog	11 6	dB dB
Adjacent channel selectivity, digital analog	16** 16*	dB dB
Alternate channel selectivity, digital analog	45** 65*	dB dB
IMD attenuation, digital analog 60/120 kHz analog 330/660 kHz	65** 65* 70*	dB dB dB
Cascaded NF, digital analog	< 9 < 10	dB dB
Cascaded IIP3, digital analog 60/120 kHz analog 330/660 kHz	> -8.5 > -9.5 > -11.0	dB dB dB
RF front end gain control range, AGC2 step	20 +/- 2 low band 20 +/- 2 high band	dB
1st IF gain control range, AGC in 6dB steps	30	dB
Input dynamic range	-11625	dBm
Gain relative accuracy in receiving band	±3	dB
*referenced to the sensitivity level	** referenced to -11	0 dBm

Table 30: RF Characteristics, Receiver AMPS/TDMA

Item	NMP requirement	Units / Notes
3 dB bandwidth	+/- 91	KHz
Reference noise bandwidth	247	KHz
Sensitivity	-102	dBm
C/N for sensitivity	8	dB
C/I for IMD	9	dB
Adjacent channel selectivity	9	dB
Alternate channel selectivity	41	dB
IMD attenuation	50	dB
Cascaded NF	< 9.5	dB
Cascaded IIP3	> -8	dB
AGC dynamic range	-10530	dB
Accurate AGC control range	60	dB
Input dynamic range	-10520	dBm
Accurate RSSI dynamic range	-11048	dBm
Gain relative accuracy in receiving band	+/- 1.0	dB

Table 31: RF Characteristics, Receiver GSMK

Transmitter

Table 32: RF Characteristics D-AMPS, Transmitter

Item	DAMPS	TDMA1900
TX frequency range	824.01848.97 MHz	1850.011909.95 MHz
Туре	One IF upconversion	
Intermediate frequency	179.04 MHz	214.08 MHz
Nominal power on highest power level	27.3/26.5 dBm	27.3 dBm
Power control range	35 dB	
Maximum rms error vector	12.5%	

Tighter limits for TDMA power levels are set as a design target to meet all forthcoming requirements from cellular operators. If these are not required then production specifications can be relaxed.

Power level	Analog mode	Digital mode 800 MHz	Digital mode 1900 MHz	Design target	Unit / Notes
	Class III	Class IV	Class IV	Class IV	dBm

Table 33: Transmitter power levels, TDMA

CCS Technical Documentation

0	28 +2,-4	28 +2,-4	28 +2,-4		dBm
1	28 +2,-4	28 +2,-4	28 +2,-4		dBm
2 Reduced 2 (*	28 +2,-4 26 +2,-2	28 +2,-4 26 +2,-2	28 +2,-4 26 +2,-2	28 +0.5,-1 26 +1,-1	dBm
3	24 +2,-4	24 +2,-4	24 +2,-4	24 +2,-2	dBm
4	20 +2,-4	20 +2,-4	20 +2,-4	20 +2,-2	dBm
5	16 +2,-4	16 +2,-4	16 +2,-4	16 +2,-2	dBm
6	12 +2,-4	12 +2,-4	12 +2,-4	12 +2,-2	dBm
7	8 +2,-4	8 +2,-4	8 +2,-4	8 +2,-2	dBm
8	-	4 +2,-4	4 +2,-6	4 +2,-2	dBm
9	-	0 +2,-6	0 +2,-8	0 +2,-2	dBm
10	-	-4 +2,-8	-4 +2,-10	-4 +2,-2	dBm

(* Used when battery voltage goes lower than 3.3V and in high temperature.

Table 34: RF Characteristics GSM Transmitter

Item	GSM1900
TX frequency range	1850.021909.8 MHz
Туре	One IF upconversion
Intermediate frequency	213.2 MHz
Nominal power on highest power level	29.5 dBm
Power control range	min. 30 dB
Maximum phase error	5deg.rms /20 deg. Peak

Synthesizers

The frequency plan has been described earlier and the synthesizer requirements are described in the Synthesizer Design Document. Some of the principal features are summarised in the table below

Table	35: Pricipal	features o	of synthes	izers

	AMPS/TDMA	GSM/GMSK
Synthesizer settling time	+/- 3 kHz in 1.4ms	+/-0.1ppm in 540us
RMS Phase Error	4 degrees	2.2 degrees

CCS Technical Documentation

UHF LO Phase Noise	-117 dBC/Hz at 60 kHz for AMPS -122 dBc/Hz at 120 kHz for TDMA LB	-117 dBc at 400 kHz -130 dBc at 1600 kHz	
	IDMA LB		

Antenna

The main antenna is an internal dual resonance PIFA-antenna. The antenna gain is 0 dBi in both bands.

EMC

RF shielding on NPM-2NX is achieved by 2 rectangular surface mounted metal shields with clip on lids. This approach is technically effective and allows the RF implementation to progress without critical dependencies on the plastic cover development.

One shielded area contains the Tx blocks: upconverter, PA, power detector module, RF and IF filters and the LB duplexer. The other contains the RF ASIC, Rx filters, VCTCXO and synthesizer components. Outside are the high band LNA, upper band duplexer and diplexer.

Considerable care has also been taken to minimise coupling between lines and to minimise radiation. There is a flooded ground on layer 3, and in the RF area most of layer 8 is flood ground. Hot vias have been kept to a minimum by using blind vias between layer 1 and 2

Radiated spurious emissions, Receiver

Definitions, methods of measurements and spec limits are defined in IS-137 and GSM1900 standard standards. Some highlights:

Frequency/MHz	Specification limit/dBm IS137	Specification limit/dBm GSM1900 standard
25-70	-45	-57dBm
70-130	-41	-57dBm
130-260	-41-32	-57dBm
174-260	-32	-57dBm
260-470	-32-26	-57dBm
470-2000	-21	-57 / -47dBm

Table 36: Radiated spurious emissions, Receiv	/er
---	-----

Conducted spurious emissions, Receiver

Definitions, methods of measurements and spec limits are defined in IS-137 and J-STD-007 standards. Some highlights:

Frequency/MHz	Specification limit/dBm IS137	Specification limit/dBm GSM1900 standard
Lowest LO/IF to 6GHz	-47	-57 /-47dBm
Mobile RX	-80	-71dBm
Mobile TX	-60	-53dBm

. . **.** .

Harmonic and spurious emissions, Transmitter, conducted and radiated

Definitions, methods of measurements and spec limits are defined in IS-137 and GSM1900 standard. Some highlights:

Frequency/MHz	Specification limit/dBm IS137	Specification limit/dBm GSM1900 standard
Lowest spurious to 10*fc	-13dBm	-30dBm
Mobile RX	-80dBm	-71dBm
Mobile TX	-13 dBm or 45 dBc	-36dBm

Table 38: Harmonic and spurious emissions, Transmitter

Maintainability

The basic premise of the serviceability is that all RF components are serviceable except the PA. This is because of the difficulty of reliably soldering the PA without an additional solder stencil for the repair centres. This stencil could be provided if the FFR of the PA becomes an issue. Those components which are under the lip of the shields are, in practice, unlikely to be field replaceable: these are mainly discrete components which should have very low FFRs.